Capteur ultrasonique HC-SR04

Caractéristiques

Le capteur est composé d'un émetteur d'ultrasons, d'un récepteur et du circuit de commande. Il est généralement utilisé pour mesurer des distances entre le capteur et un obstacle.

• Dimensions: 45 mm x 20 mm x 15 mm

• Plage de mesure : 2 cm à 400 cm

• Résolution de la mesure annoncée : 0,3 cm (en pratique : 1 cm)

• Angle de mesure efficace : 15 °

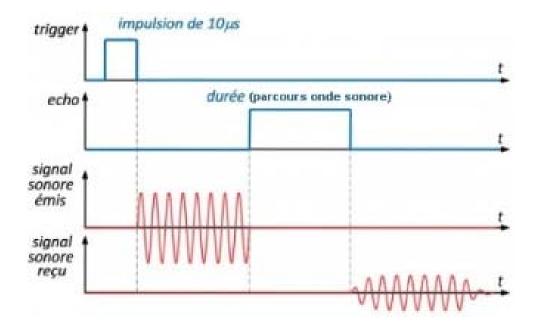
Broches de connexion

• Vcc = Alimentation +5 V DC

- Trig = Entrée émetteur d'impulsion d'ultrasons (Trigger input)
- Echo = Sortie récepteur d'impulsion d'ultrasons (Echo output)

• GND = Masse 0V

Spécifications et limites


Tension d'alimentation : 5.0 V à ± 0.5 V
Courant de repos : 2.0 mA à ± 0.5 mA
Courant de fonctionnement : 15 ± 5 mA

• Fréquence des ultrasons : 40 kHz

Le principe de fonctionnement :

- 1. Envoyer un signal numérique à l'état haut sur l'émetteur pendant 10 µs,
- 2. Le capteur envoie automatiquement 8 impulsions d'ultrasons à 40 kHz,
- 3. A la fin des 8 impulsions, la sortie Echo du capteur passe à l'état haut,
- 4. Si le signal revient et est détecté par le récepteur, la sortie Echo du capteur passe à l'état bas. La durée de l'état haut du signal Echo correspond au temps entre l'émission des ultrasons et leur réception.

Le principe de fonctionnement est résumé sur le schéma suivant :

La formule couramment utilisée dans les programmes Arduino permettant de calculée la distance entre le capteur et un obstacle est :

Distance capteur- obstacle (en cm) = durée propagation (en μ s) / 58

En effet, pour cela, on suppose que la vitesse des ultrasons dans l'air est de $V = 340 \text{ m.s}^{-1}$, la distance parcourue, **d** (en m), par l'onde sonore pendant la durée, **Dt** (en s), est alors :

dparcours onde sonore = Vultrasons x Dt

Soit : Distance capteur- obstacle (en m) = $d_{parcours onde sonore}/2 = V_{ultrasons} \times Dt/2$

Distance capteur- obstacle (en m) = $340 \times Dt / 2$

Distance _{capteur-obstacle} (en cm) = $34000 \times Dt$ (en μs) /2000000 = $17 \times Dt$ (en μs) / 1000

Distance _{capteur- obstacle} (en cm) = Dt (en μ s) / 58,82

Le capteur ultrasonique **HC-SR04** dispose de 2 broches différentes pour l'émission et la réception des ultrasons.

Il existe également des capteurs ultrasoniques à une seule broche, comme le **Grove 101020010**

Capteur ultrasonique Grove 101020010

Caractéristiques

Le capteur est composé d'un émetteur d'ultrasons, d'un récepteur et du circuit de commande. Il est généralement utilisé pour mesurer des distances entre le capteur et un obstacle.

Dimensions: 50 mm x 25 mm x 16 mm
Plage de mesure: 2 cm à 350 cm
Résolution de la mesure: 1 cm
Angle de mesure efficace: 15 °

Broches de connexion

Vcc = Alimentation +5 V DC

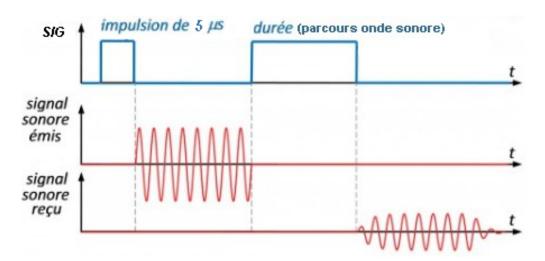
• SIG = Entrée émetteur et sortie récepteur d'impulsion d'ultrasons

• GND = Masse 0V

• NC = Non connectée

<u>Spécifications et limites</u>

Tension d'alimentation : 3,2 V à 5,2 V
Courant de fonctionnement : 8 mA
Fréquence des ultrasons : 40 kHz


• Température de fonctionnement : 10 - 60 °C

Le principe de fonctionnement :

- 1. Déclarer la broche de l'Arduino sur laquelle est connectée la broche **SIG** du capteur en sortie numérique et la maintenir à l'état bas pendant 2 µs,
- 2. Envoyer un signal numérique à l'état haut sur l'émetteur (sur la broche SIG) pendant 5 µs,
- 3. Le capteur envoie automatiquement des impulsions d'ultrasons à 40 kHz,

- 4. Déclarer la broche de l'Arduino sur laquelle est connectée la broche **SIG** du capteur en entrée numérique, afin de pouvoir recevoir le signal du récepteur d'ultrasons.
- 5. A la fin des impulsions, la broche SIG du capteur passe à l'état haut,
- 6. Si le signal revient et est détecté par le récepteur, la broche **SIG** du capteur passe à l'état bas. La durée de l'état haut du signal **SIG** correspond au temps entre l'émission des ultrasons et leur réception.

Le principe de fonctionnement est résumé sur le schéma suivant :

Le principe de calcul de la distance entre ce capteur et un obstacle reste le même.